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Digraphs

A digraph is a tuple (E 0,E 1, s, r), where E 0 and E 1 are sets called
the vertices and edges respectively, and s : E 1 → E 0 and
r : E 1 → E 0 are functions from E 1 to E 0 that we call the source
and range respectively.
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Inverse Semigroups

We say that a semigroup S is an inverse semigroup if for every
x ∈ S there exists unique x−1 ∈ S such that

xx−1x = x and x−1xx−1 = x−1.
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Graph Inverse Semigroups

Now, given a digraph we can define an inverse semigroup. A graph
inverse semigroup (GIS) G (E ) is an inverse semigroup with zero
adjoined, generated by E 0, E 1, and a third set E−1 that
corresponds to the inverses of edges. The semigroup G (E ) must
satisfy the following four axioms for all u, v ∈ E 0 and e, f ∈ E 1:

(V) vu = δv ,uv ,

(E1) s(e)e = er(e) = e,

(E2) r(e)e−1 = e−1s(e) = e−1,

(CK1) e−1f = δe,f r(e).
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Example

In this case,

G (E1) =
{0, v1, v2, v3, e1, e2, e−11 , e−12 , e1e

−1
1 , e2e

−1
2 , e1e

−1
2 , e2e

−1
1 }.

G (E2) =
{0, v4, v5, e4, e5, e−14 , e−15 , e4e5, e5e4, (e4e5)2, (e5e4)2, ...}

Remark: If a digraph E has cycles or loops then G (E ) is infinite.
For most of this talk our digraphs will be finite, acyclic, and will
have no loops.
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Congruences on Graph Inverse Semigroups

A congruence ρ of a semigroup S is an equivalence relation that
satisfies the following property: If (s, t), (u, v) ∈ ρ, then
(su, tv) ∈ ρ.

Question

Is there a way to describe congruences of a a graph inverse
semigroup in terms of its digraph?

We call a subset H ⊆ E 0 hereditary if it is closed under reachability,
i.e. if v ∈ H then all the out-neighbours of v also lie in H.
For any v ∈ E 0 we denote by s−1(v) the set of edges of G (E )
whose source is v . Finally, we denote the subset of edges in s−1(v)
whose range does not lie in V ⊆ E 0 by s−1E\V (v).

Marina Anagnostopoulou-Merkouri Congruence Lattices of Graph Inverse Semigroups



An example

Figure: An example
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Representing congruence in terms of the graph

Definition

Let H ⊆ E 0 be a hereditary subset and W be any subset of E 0 \H
such that |s−1E\H(w)| = 1 for all w ∈W . Then we call (H,W ) a
Wang pair.

If (H,W ) is a Wang pair then we define

ρ(H,W ) =
(
(H×{0})∪{(ee−1,w) : w ∈W , s(e) = w , r(e) 6∈ H}

)]
.

Theorem (Wang, ’19)

There is a one-to-one correspondence between the set W of Wang
pairs and congruences of G (E ).
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Another example

Here (H,W ) is a Wang pair and

ρ(H,W ) =
(
{(vi , 0) | 1 ≤ i ≤ 5} ∪ {(w1, e1e

−1
1 ), (w2, e2e

−1
2 )}

)]
.
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Lattices

A lattice L is a partially ordered set where for every a, b ∈ L there
exists a unique greatest lower bound a ∧ b, called the meet of a
and b, and a unique least upper bound a ∨ b, called the join. The
congruences of a semigroup form a lattice. We denote the
congruence lattice of G (E ) by L(G (E )).

Question

Can we use Wang’s congruence representation to describe
L(G (E ))?

Theorem (Wang, ’19)

We can define a partial order ≤ on the set of Wang pairs.

Theorem (Luo, Wang, ’21)

The partially ordered set (W,≤) and L(G (E )) are order
isomorphic, and consequently (W,≤) forms a lattice.
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Meets and joins, and covers

Luo and Wang also showed how to compute meets and joins of
Wang pairs, which completely reduces the question of working with
congruences of G (E ) to working with Wang pairs.
Let (L,≤) be a lattice and a, b ∈ L. Then we say that b covers a
and write a ≺ b if a < b and there is no c ∈ L such that a < c < b.

Lemma (AM, Mesyan, Mitchell, ?)

If G (E ) is finite and (H,W ), (H ′,W ′) ∈ W, then
(H,W ) ≺ (H ′,W ′) if and only if |(H ′ ∪W ′) \ (H ∪W )| = 1.

If L is finite, we say that L is upper-semimodular if a ∧ b ≺ a, b
implies a, b ≺ a ∨ b, and we say that L is lower-semimodular if
a, b ≺ a∨ b implies a∧ b ≺ a, b. We say that L is modular if a ≤ b
implies a ∨ (x ∧ b) = (a ∨ x) ∧ b and finally we say that L is
distributive if it satisfies the distributive law.
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Upper-semimodularity

Question

What properties does L(G (E )) possess?

Theorem (Luo, Wang, ’21)

The lattice L(G (E )) is upper-semimodular, but not necessarily
lower-semimodular.

Question

When is L(G (E )) lower-semimodular?
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Lower-semimodularity

If u, v ∈ E 0 we write u ≥ v if there is a path from u to v . We say
that v ∈ E 0 is a forked vertex if there exist e, f ∈ s−1(v) such that

r(g) 6≥ r(e) for all g ∈ s−1(v) \ {e};
r(g) 6≥ r(f ) for all g ∈ s−1(v) \ {f }.

Theorem (AM, Mesyan, Mitchell, ?)

If G (E ) is finite, then the following are equivalent:

L(G (E )) is lower-semimodular;

L(G (E )) is modular;

L(G (E )) is distributive;

E has no forked vertices.
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An example
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Other properties

If 0 is the least element of L, we say that a ∈ L is an atom if
0 ≺ a, and we call L atomistic if it can be generated by atoms.
We call a connected digraph a tree if there is at most one path
between any two vertices.

Theorem (AM, Mesyan, Mitchell, ?)

If G (E ) is finite, then the following are equivalent:

L(G (E )) is atomistic;

L(G (E )) is isomorphic to the lattice (P(E 0),⊆);

L(G (E )) is a disjoint union of trees with a unique sink.
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Generating L(G (E ))

Theorem (AM, Mesyan, Mitchell, ?)

Let E be a finite simple acyclic digraph, and let A be a collection
of congruences of G (E ). Then A is a minimal generating set (with
respect to containment) for L(G (E )) if and only if A contains all
the congruences of the following types:

ρ({v}, ∅) for every v ∈ E 0 such that |s−1(v)| = 0 (i.e. v is a
sink);

ρ(H, {v}) for every v ∈ E 0 such that |s−1(v)| > 0 and where
H is any minimal (with respect containment) hereditary
subset of E 0 such that |s−1E\H(v)| = 1.

This gives us a way to generate the congruence lattice using only
the graph and not the semigroup.The graph has significantly
smaller size than the semigroup, and hence we can use this to
construct a much faster algorithm to compute L(G (E )).
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Back to our example
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Computation

We can use the generation result to compute L(G (E )).

Step 1: Compute generating Wang pairs. Iterate over the
vertices v of E . If v is a sink add (v , ∅) to the generating set.
Otherwise, use DFS compute minimal hereditary subsets H
such that (H, v) is a Wang pair and add (H, v) to the
generating set for every such H.

Step 2: Compute joins. Create a method that computes
joins of Wang pairs using Luo and Wang’s method for
computing joins.

Step 3: Compute L(G (E )). Use already existing algorithms
to compute the lattice.

Methods that carry out this computation are available in the GAP
semigroups package.
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Complexity

It can be derived from the axioms that the elements of G (E ) are of
the form xy−1 where x and y are paths of edges. Computing an
upper bound for the number of such paths we deduce that |G (E )|
is O(2nn(n − 1)) where n = |E 0|.
Using semigroup-theoretic algorithms to compute L(G (E )) we can
have at best a polynomial time algorithm on |G (E )|. Using the
structure of the digraph instead together with the generation result
we can compute L(G (E )) in time O(n3 + n2m), where m = |E 1|.
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Extending results to the infinite case

Theorem (AM, Mesyan, Mitchell, ?)

If G (E ) is a graph inverse semigroup, then L(G (E )) is
lower-semimodular if and only if E has no forked vertices.

Theorem (AM, Mesyan, Mitchell, ?)

Every congruence in L(G (E )) is the join of a (possibly infinite)
collection of atoms if and only if for every v ∈ E 0 one of the
following holds:

|s−1(v)| = 0;

|s−1(v)| = 1, v does not belong to a cycle, and v > u for
some u ∈ E 0 such that |s−1(u)| 6= 1;

|s−1(v)| ≥ 2, and r(e) ≥ v for all e ∈ s−1(v).

Moreover, L(G (E )) is atomistic if and only if, in addition to the
above conditions on all vertices, E 0 has only finitely many strongly
connected components and vertices v such that |s−1(v)| = 1.
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